from __future__ import division import numpy as np import caffe import timeit from matplotlib import pyplot as plt ################################################################################################## CAFFE_ROOT = '/home/test1/caffe' MEAN_FILE = CAFFE_ROOT+'/python/caffe/imagenet/ilsvrc_2012_mean.npy' TEST_FILE = CAFFE_ROOT +'/data/test1/val.txt' TEST_FOLDER = CAFFE_ROOT+'/data/test1/jpg/' LABLE_FILE = CAFFE_ROOT+ '/data/test1/labels.txt' MODEL_FILE = CAFFE_ROOT+ '/models/test1/deploy.prototxt' PRETRAINED = CAFFE_ROOT + '/models/test1/snapshout/test1_train_iter_2000.caffemodel' ################################################################################################## files =[] classes = [] lines = [] labels = [] with open(TEST_FILE) as f: lines = f.readlines() with open(LABLE_FILE) as f: labels = f.readlines() for i in range(len(lines)) : fileName,classLabel = lines[i].split() files.append(fileName) classes.append(classLabel) ################################################################################################## net = caffe.Classifier(MODEL_FILE, PRETRAINED, mean=np.load(MEAN_FILE).mean(1).mean(1), channel_swap=(2,1,0), raw_scale=255, image_dims=(256, 256)) caffe.set_mode_gpu() ################################################################################################## perf = 0 counter =0 print 'total test sample', len(files) start_time = timeit.default_timer() for i in range(len(files)): print TEST_FOLDER+files[i] input_image = caffe.io.load_image(TEST_FOLDER+files[i]) #print input_image prediction = net.predict([input_image]) ######### #print prediction